7 research outputs found

    RINNO: Towards an Open Renovation Platform for Integrated Design and Delivery of Deep Renovation Projects

    Get PDF
    The building stock accounts for a significant portion of worldwide energy consumption and greenhouse gas emissions. While the majority of the existing building stock has poor energy performance, deep renovation efforts are stymied by a wide range of human, technological, organisational and external environment factors across the value chain. A key challenge is integrating appropriate human resources, materials, fabrication, information and automation systems and knowledge management in a proper manner to achieve the required outcomes and meet the relevant regulatory standards, while satisfying a wide range of stakeholders with differing, often conflicting, motivations. RINNO is a Horizon 2020 project that aims to deliver a set of processes that, when working together, provide a system, repository, marketplace and enabling workflow process for managing deep renovation projects from inception to implementation. This paper presents a roadmap for an open renovation platform for managing and delivering deep renovation projects for residential buildings based on seven design principles. We illustrate a preliminary stepwise framework for applying the platform across the full-lifecycle of a deep renovation project. Based on this work, RINNO will develop a new open renovation software platform that will be implemented and evaluated at four pilot sites with varying construction, regulatory, market and climate contexts

    A Modified Environmental Kuznets Curve for Sustainable Development Assessment Using Panel Data

    Full text link

    Association of host factors with antibody response to seasonal influenza vaccination in allogeneic hematopoietic stem cell transplant (HSCT) patients

    Get PDF
    BACKGROUND Influenza vaccination efficacy is reduced after hematopoietic stem cell transplantation (HSCT) and patient factors determining vaccination outcomes are still poorly understood. METHODS We investigated the antibody response to seasonal influenza vaccination in 135 HSCT patients and 69 healthy volunteers (HVs) in a prospective observational multicenter cohort study. We identified patient factors associated with hemagglutination inhibition titers against A/California/2009/H1N1, A/Texas/2012/H3N2, and B/Massachusetts/2012 by multivariable regression on the observed titer levels and on seroconversion/seroprotection categories for comparison. RESULTS Both regression approaches yield consistent results but regression on titers estimated associations with higher precision. HSCT patients required two vaccine doses to achieve average responses comparable to a single dose in HVs. Pre-vaccination titers were positively associated with time after transplantation, confirming that HSCT patients can elicit potent antibody responses. However, an unrelated donor, absolute lymphocyte counts below the normal range and treatment with calcineurin inhibitors lower the odds of responding. CONCLUSIONS HSCT patients show a highly heterogeneous vaccine response, but overall, patients benefited from the booster shot and can acquire seroprotective antibodies over the years after transplantation. Several common patient factors lower the odds of responding, urging to identify additional preventive strategies in the poorly responding groups

    Illusion of truth: analysing and classifying COVID-19 fake news in Brazilian Portuguese language

    Get PDF
    Public health interventions to counter the COVID-19 pandemic have accelerated and increased digital adoption and use of the Internet for sourcing health information. Unfortunately, there is evidence to suggest that it has also accelerated and increased the spread of false information relating to COVID-19. The consequences of misinformation, disinformation and misinterpretation of health information can interfere with attempts to curb the virus, delay or result in failure to seek or continue legitimate medical treatment and adherence to vaccination, as well as interfere with sound public health policy and attempts to disseminate public health messages. While there is a significant body of literature, datasets and tools to support countermeasures against the spread of false information online in resource-rich languages such as English and Chinese, there are few such resources to support Portuguese, and Brazilian Portuguese specifically. In this study, we explore the use of machine learning and deep learning techniques to identify fake news in online communications in the Brazilian Portuguese language relating to the COVID-19 pandemic. We build a dataset of 11,382 items comprising data from January 2020 to February 2021. Exploratory data analysis suggests that fake news about the COVID-19 vaccine was prevalent in Brazil, much of it related to government communications. To mitigate the adverse impact of fake news, we analyse the impact of machine learning to detect fake news based on stop words in communications. The results suggest that stop words improve the performance of the models when keeping them within the message. Random Forest was the machine learning model with the best results, achieving 97.91% of precision, while Bi-GRU was the best deep learning model with an F1 score of 94.03%

    Illusion of Truth: Analysing and Classifying COVID-19 Fake News in Brazilian Portuguese Language

    No full text
    Public health interventions to counter the COVID-19 pandemic have accelerated and increased digital adoption and use of the Internet for sourcing health information. Unfortunately, there is evidence to suggest that it has also accelerated and increased the spread of false information relating to COVID-19. The consequences of misinformation, disinformation and misinterpretation of health information can interfere with attempts to curb the virus, delay or result in failure to seek or continue legitimate medical treatment and adherence to vaccination, as well as interfere with sound public health policy and attempts to disseminate public health messages. While there is a significant body of literature, datasets and tools to support countermeasures against the spread of false information online in resource-rich languages such as English and Chinese, there are few such resources to support Portuguese, and Brazilian Portuguese specifically. In this study, we explore the use of machine learning and deep learning techniques to identify fake news in online communications in the Brazilian Portuguese language relating to the COVID-19 pandemic. We build a dataset of 11,382 items comprising data from January 2020 to February 2021. Exploratory data analysis suggests that fake news about the COVID-19 vaccine was prevalent in Brazil, much of it related to government communications. To mitigate the adverse impact of fake news, we analyse the impact of machine learning to detect fake news based on stop words in communications. The results suggest that stop words improve the performance of the models when keeping them within the message. Random Forest was the machine learning model with the best results, achieving 97.91% of precision, while Bi-GRU was the best deep learning model with an F1 score of 94.03%
    corecore